Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method.

نویسندگان

  • T Kotsuka
  • S Akanuma
  • M Tomuro
  • A Yamagishi
  • T Oshima
چکیده

We succeeded in further improvement of the stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. We previously constructed a chimeric IPMDH consisting of portions of thermophile and mesophile enzymes. The chimeric enzyme is less thermostable than the thermophile enzyme. The gene encoding the chimeric enzyme was subjected to random mutagenesis and integrated into the genome of a leuB-deficient mutant of T. thermophilus. The transformants were screened at 76 degrees C in minimum medium, and three independent stabilized mutants were obtained. The leuB genes from these three mutants were cloned and analyzed. The sequence analyses revealed Ala-172-->Val substitution in all of the mutants. The thermal stability of the thermophile IPMDH was improved by introducing the amino acid substitution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: involvement of hydrophobic dimer-dimer interaction in extremely high thermotolerance.

The crystal structure of homoisocitrate dehydrogenase involved in lysine biosynthesis from Thermus thermophilus (TtHICDH) was determined at 1.85-A resolution. Arg85, which was shown to be a determinant for substrate specificity in our previous study, is positioned close to the putative substrate binding site and interacts with Glu122. Glu122 is highly conserved in the equivalent position in the...

متن کامل

Crystal structure of 3-isopropylmalate dehydrogenase from the moderate facultative thermophile, Bacillus coagulans: two strategies for thermostabilization of protein structures.

The crystal structure of 3-isopropylmalate dehydrogenase from the moderate facultative thermophile Bacillus coagulans (BcIPMDH) has been determined by the X-ray method. BcIPMDH is a dimeric enzyme composed of two identical subunits, each of which takes an open alpha/beta structure with 11 alpha-helices and 14 beta-strands. The polypeptide is folded into two domains. The first domain is composed...

متن کامل

High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low DeltaC(p) of unfolding.

To characterize the thermal stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, urea-induced unfolding of the enzyme and of its mesophilic counterpart from Escherichia coli was investigated at various temperatures. The unfolding curves were analyzed with a three-state model for E.coli IPMDH and with a two-state model for T.thermophilus IPMDH, ...

متن کامل

A plasmid vector for an extreme thermophile, Thermus thermophilus.

The host-vector system for an extreme thermophile, Thermus thermophilus HB27, was developed. The host strain has a mutation in tryptophan synthetase gene (trpB), and the mutation was determined to be a missense mutation by DNA sequence analysis. A Thermus-E. coli shuttle vector pYK109 was constructed. pYK109 consists of Thermus cryptic plasmid pTT8, tryptophan synthetase gene (trpB) of Thermus ...

متن کامل

Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus.

Extreme thermophiles produce two types of unusual polyamine: long linear polyamines such as caldopentamine and caldohexamine, and branched polyamines such as quaternary ammonium compounds [e.g. tetrakis(3-aminopropyl)ammonium]. To clarify the physiological roles of long linear and branched polyamines in thermophiles, we synthesized them chemically and tested their effects on the stability of ds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 178 3  شماره 

صفحات  -

تاریخ انتشار 1996